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The Glauber kinetics of Ising spins is considered as a queueing process and 
simulated "event by event" as first proposed by Bortz, Kalos, and Lebowitz. The 
advantage of this algorithm compared to the standard single-flip Monte Carlo 
method is discussed for the situation of slowing down of dynamics. This process 
is used to generate fluctuations of magnetization and energy in the critical 
regime T = T c of two-dimensional Ising models. The analysis of these fluctua- 
tions leads to numerical determination of the critical exponents for dynamics: 
for the size dependence of correlation time at T c, and /~ for frequency depen- 
dence of the power spectrum S(~)~r From the finite-size scaling hypothe- 
sis, scaling relations are settled which are confirmed by this numerical experi- 
ment. 

KEY WORDS: Ising; critical dynamics; spectral powers; queueing pro- 
cess. 

1. I N T R O D U C T I O N  

The concept  of  scaling invariance in the critical regime predicts very precise 
behavior  for finite-size systems of interacting particles. This behavior  has 
been discussed by Fisher r in terms of scaling theory involving the critical 
exponents  of the corresponding infinite systems. It is remarkable  that for a 
very small-size system one accesses very easily to critical exponents of the 
infinite system by  varying the size of  the samples studied. The numerical  
simulation is therefore very well adapted  for these types of study and the 
finite-size scaling theory has been verified ~2) for magnet ic  and thermal 
properties of  the Ising model.  Only  very few at tempts ~3) have been devel- 
oped  for the critical dynamics  which is based similarly on the finite-size 
scaling hypothesis  proposed  by Suzuki. (4) The aim of this article is to test 
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this hypothesis and to determine the critical dynamical exponent by using a 
new algorithm for generating kinetics of Ising spins. Since this work 
includes the determination of the characteristic correlation time of a finite 
sample, it gives in addition indication for proper use of the time average for 
static thermodynamic variables. 

The kinetics of the Ising model is based on the Glauber (5) model 
where the time evolution is created by a single-spin-flip transition matrix. 
This kinetics is simulated by the Monte Carlo method which generates 
sequences of configuration states for the system by using a single-spin 
transition probability obeying the Boltzmann law. In general the study of 
static critical phenomena is performed by the same method which leads to 
time average instead of ensemble average. We are primarily interested by 
the critical slowing down which is the strongest at TMA x (L), a temperature 
corresponding to the peak of the specific heat and L the linear size of the 
system [the correlation time ~-(L) must diverge as L ~ when L goes to 
infinity]. We need very long records of fluctuations, longer than the 
correlation time ~'(L). Owing to the long and expensive computer time 
involved in the standard Monte Carlo method, we have chosen a different 
stochastic process for simulating the time evolution of the system. In this 
process each step corresponds to a real flip of one spin instead of frequent 
unsuccessful trials of spin flip in the standard method, particularly at low 
temperature. The acceleration rate gained by this process first proposed by 
Bortz, Kalos, and Lebowitz (6) is about 5 at T c. In Section 2, the method is 
presented in some detail and a comparison with the standard Monte Carlo 
method is given. In Section 3, the fundamental hypothesis of the dynamical 
scaling invariance for finite-size systems is recalled. New scaling relations 
are obtained for the critical exponent #M and/~E of the power spectrum 
S(to) = w -~ of magnetization and energy. Finally, in Section 4, the results 
obtained for this model of critical kinetics are presented and the numerical 
values of z and /~e and /~M are given. The value z = 2 + 0.1 confirms 
Suzuki's prediction while the values/~M = 15/8 and/x E = I are obtained for 
the first time. 

2. QUEUING PROCESS---METHOD OF BORTZ, KALOS, 
AND LEBOWITZ <6> (BKL) 

In Glauber kinetics, spins behave like customers waiting to be served. 
Service consists in a state change (flip of spin, for example). Two possible 
transitions exist: "period by period" or "event by event." The Monte Carlo 
method is a "period-by-period" simulation at discrete times while the BKL 
process is an "event-by-event" simulation with continuous time. Let us 
consider the continuous time model for N interacting Ising spins. 
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A configuration (Xt} is the state of all the spins at the time t t ~ ~, 
where x t E ( - 1, 1 }N. 

The process generates a set { X t }  of configurations. It is a continuous, 
Markovian and homogeneous process, i.e., satisfying the following two 
conditions: 

(I) For any t I < t 2 < t3 < �9 �9 �9 < tn < t 

Pr(X, = f l l X , .  = a, , ,X, ._ ,  = an_ , . . . . .  X,, = a,)  - Pr(X, = fllX,. = an) 

where fl ~ ( - 1, 1 }u and ak E ( - 1, 1 }N 1 < k < n (Markovian continuous 
process). 

(II) For a n y t > 0 a n d s > 0  

Pr(X~+ t =/31X~ = a) = Pr(X t = fll X0 = a) 

(homogeneous continuous process). 
Let us recall that a queueing process is conventionally defined by (7) 

the arrival process 
the service process 
the number of servants 
the largest number of customers in the system 
the interaction between number of customers in the system and the 

arrival process 
the discipline 

These different characteristics of the BKL process are identified as 
follows: 

Arrival Process. Let (9~ > 0 be the "persistence" of the state (a) 
a :  

(III) Pr(O~ > t + r/[O~ > t) 

= P r ( X ~ = a ; t < r  

Using (I) we get 

P r ( X , = a ; t < ~ ' < t + n [ X s = c t ; 0 < s < t )  

= P r ( X , = a ; t < ' r < t + n I X t = a )  

and using (II) 

P r ( X ~ = a ; t < r <  t + n l L = a ) = P r ( X , = a ; 0 K ~ ' ~ < 7 / l x  0 = a )  

and so (ill) becomes 

(IV) Pr(O~ > t + n lO~ > t) = Pr(O~ > ~/) 

(IV) is a characterization of exponential distribution. 
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Then 3X ~ N 

(v) 

Let us notice 

Pr(O~ < t) = 1 - e -xt 

Pr(O, > t) = exp(-Xt)  

that generally X depends on a. In the case of Ising 
interacting spins, we get 

Pr(O~ > t) = Pr(no spins will be flipped before the instant t) 

= 1-I Pr(the spin oi will not be flipped before t) 
all i 

= 1-I (exp ( - P~t}) 
i 

with 

Pi ~ = inf[exp(-(AEi/  T ), 1)] (Boltzmann) 

where AE i is the variation of energy associated to the flip of the spin o/; T is 
the temperature. So 

Pr(O" > t) = exp[ - (  ~'Pff ) ] =- exp(-  

N 

Sa ~ E Pi ̀~ 
i = 1  

is the rate of evolution of the system in the state a (during the relaxation of 
the system S~ changes of value at each event). At high temperature 
hE/<< T, then P / ~ I  and S ~ N .  

(b) Service Process. Here the service process is obvious. We 
admit that the flip is instantaneous. The service process is determinist with 
a duration equal to zero. 

(c) Number of Servants. There is only one servant. We exclude 
the simultaneous flip of n spins. Therefore, notice that the duration between 
two flips can be very short. 

(d) Number of Customers in the System. This number is simply 
the number N of spins. 

(e) Interaction. There is no interaction between the number of 
customers and the arrival process. 

(f) Discipline. Because the duration of one flip is zero, there is no 
discipline. Therefore, this queueing process is 

( M ( S,~ ), D (0), 1, N, o% indifferent) 
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So is the characteristic parameter of this queueing process and M(S.) is 
conventionally the rate of the exponential decay: exp( -  S j) .  

Description of a BKL Algorithm 

The principle is simple: the duration of the present event and the 
choice of the spin which will be flipped at the next step is computed. 

The persistence of the current event obeys the following exponential 
law: M(S~). The spins are chosen with relative probability as compared 
with all likelihood (Fig. 1). 
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Fig. 1. Chart flow for the queueing process of BKL. 
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(a) Initialization. For external conditions fixed (temperature, mag- 
netic field, etc . . . .  ) an initial configuration of spins is chosen at random. 

(b) Calculation ot the Persistence of the Current Event. We 
chose a random number T obeying the exponential law (parameter 1); then 
t = T~ S is the persistence of the current event. This is the basic difference 
between the Monte Carlo method and the BKL method. Indeed, the time 
units used in the two methods are different: In the Monte Carlo (MC) 
method, the spin i is chosen with uniform probability among the set of N 
spins: it is the elementary step. The "MCS/sp in"  corresponds to N consec- 
utive steps; in the BKL method, each step corresponds to a real flip. 

Let �9 be the mean time till the next event (i.e., the mean time of 
persistence). 

(i) With the BKL process, �9 is given by 

"r = fo~176 S" du--- 1 /  S 

(ii) In the MC process, let Pk be the probability that the next event 
will occur at the step k. For k = 1 : Pl = ~a ,  i Pr(choose the spin oi) • 
Pr(flip th spin i) 

Pr(choose the spin oi) = 1 I N  

Pr(flip the spin oi) = e i  = min(1, e x p ( A E i / T ) )  

P1 = S / N ,  then Pk = (1 -- S / N ) k - I S / N  
~ o  

1 (in MSC/spin)  ~- = ~ kP k = N / S (in MSC unit) = -~ 
k 

by identification, we get 

1 unit of time BKL = 1 MCS/spin 

Note that ~- --- N / S  is independent from N (because S ~ N ) .  

Summary. We chose a random number D with an exponential 
probability (parameter 1). The duration of the present state is D / S  in 
MCS/spin  unit. 

(c) Choice o! the Spin. To each spin o i is associated an interval I i 
with I i c [0, 1]; 

U l i =  [0,1],  I; n / j  = 0 
all  i 

and the A(Ii) the length of I i is proportional to the probability Pi of flip of 
the spin oi: 

h ( i , )  = p, / E Pj 
a l l j  
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Now a random number R with uniform probability in [0, 1] is chosen. 
It identifies an internal I i by R ~ I; and the spin i. 

(d) Calculation of the New S. The flip of o i changes only the 
value of Pi and the fourth Pj wherej label the nearest-neighbors spins of o r 

For both these processes, the sequence of configurations of spins is the 
same; but the time of computation to build these sequences can be very 
different: Let us define the efficiency ratio 7 = t / t ' ,  where t is the mean 
elapsed time in simulation for a given sequence (for example, the mean 
time between two successive flips of spins) and t' the related time of 
computation. At high temperature 7 is the same for both these processes 
because each trial provides a flip in Monte Carlo method as in BKL. At 
low temperature, the situation is different. In Monte Carlo kinetics t' is 
proportional to t and "/ does not change from its high-temperature value. 
On the contrary, in BKL, t increases strongly for constant t'. For instance if 
the sequence is defined by tE) successive flips, t = ~" the mean persistence 
time equal to S -~ which diverges exponentially as T-->0. In the critical 
regime of the Ising model, we have typically found an efficiency ratio larger 
by a factor 4.5 in favor of BKL. We have checked that this factor can reach 
a very high value ( ~  l0 3 to 10 6) at lower temperature. 

3. FINITE-SIZE SCALING FOR THE CRITICAL DYNAMICS 

The static critical behavior of finite systems has been discussed by 
Fisher O) in terms of scaling functions involving the infinite lattice critical 
exponents. The basic assumption is that the thermodynamic functions for 
finite systems of N = L d spins and of linear size L with periodic boundary 
conditions are universal functions of the ratio L/~, where ~ is the character- 
istic correlation length ~ = ~0 r at temperature E = [ T -  Tc(oo)]/Tc(~ ). 
Here ~o is an atomic distance for the system considered while Tc(~) is the 
infinite-lattice transition temperature. For finite size (and specified bound- 
ary conditions) there is a shift in the "pseudoordering" temperature T,(N) 
(Landau (2)) defined by the maximum in the specific heat, given by 

& = [1 - T~(N)/T~(~)]. . . ,aL -~ (3.1) 

according to scaling theory. This fundamental hypothesis leads to the 
following relations for the intensive variables such as the susceptibility 
X(e, L) and the specific heat C(~, L) (per spin) 

x T =  Lv/~Y~ 
(3.2) 

C = L~'/PZ~ l/v) 

For large values of the variable eL 1/~, these functions must reproduce 
the infinite-lattice critical behavior in such a way that Y~  and 
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Z ~  -~. On the contrary, in the "rounded" regime, x ~ O, Y~ and 
Z~ go to constant values. These assumptions have been tested success- 
fully by various authors and particularly by numerical Monte Carlo simula- 
tions. (2) It is indeed a predilection field for numerical experiments since the 
size dependence is much easier to study than by true experiments and leads 
very directly to the fundamental exponents of infinite systems. In this 
article, we use the same method to study the dynamics of the Ising system 
in the very critical regime T =  Tc(N ), in view of verifying the basic 
hypothesis of the critical dynamics. 

Our study is devoted to the autocorrelation functions of the total 
magnetization M(t)  and total energy E(t) of the Ising square lattice of 
spins (with periodic boundary conditions). These functions are defined by 
the following expressions: 

CM(t ) = (6M(O) 8M(t ) )  
(3.3) 

cE(t) = ( B e ( 0 )  Be(t)) 
Here the brackets represent the ensemble average (calculated by a time 

average as described in the following paragraph), 8M(t) = M(t)  - ( M )  the 
deviation of the magnetization from its average value ( M ) ,  and BE(t) 
= E(t) - ( E )  the fluctuations of the energy around the mean value (E) .  
The power spectrum of these functions are defined by a Fourier transform 

S m (~o) = 2 ~ ( c o s  o~t) C M (t) dt 

(3.4) 
S E (60) = 2f0~176 oJt) CE (t) dt 

where it has been taken into account that the correlation function is even. 
By analogy with static scaling, the dynamical scaling assumption consists in 
assuming the existence of a characteristic correlation time "r L depending on 
the size ~'L~L z, where z is the bulk critical exponent like p in the spatial 
problem. This hypothesis is supported by renormalization group arguments 
developed by Suzuki (4) on the time-dependent Ginzburg-Landau model or 
the Glauber kinetics for Ising models. Then, the time dependence of the 
dynamical variables like the correlation functions is embedded in the scaled 
variables t / 'r  L or tL -~ for samples of various sizes. More precisely, it is 
assumed that 

CM(t ) = CM(O)fM(tL -~) 
(3.5) 

CE(t ) = Ce(O)fE(tL -2) 

It is expected that the same z appears in the magnetization as well as 
the energy since one single characteristic time rL is present in this model. 
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From (3.5) and (3.4), the spectrum power takes the scaled invariant 
form: 

SM(~o ) = CM(O)L'~I'M(~OL z) 
(3.6) 

Se(~o ) = CE(O)LZg E(~OL z) 

The fluctuations of the extensive magnetization CM(O ) and of the 
energy CE(O ) are proportional, respectively to the intensive magnetic sus- 
ceptibility and specific heat by the relations 

CM(O ) = (6M 2) = LaX T 
(3.7) 

cE(o) = (BE 2) = L CT 

In the very critical regime T = Tc(N), c = 8e << 1 and eLl~V<< I. The 
functions y0 and Z ~ of (3.2) reach a constant value, where the unique size 
dependence is contained in the functions ~Og(tL-Z), ~I'E(tL -z) and the 
prefactors. This "rounded" regime in temperature is very convenient for 
studying the dynamical exponent z revealed directly by the size dependence 
of the scaled functions if'. 

More precisely, by replacing the size dependence of X and C from (3.2) 
in (3.7), then finally in (3.6) we obtain 

S M (~o, L) = Ld+z+v/V~ZM(~OL z) 
(3.8) 

SE(~o, L) = L a+ Z+"/~'P e(~oL* ) 

The expressions (3.8) can be developed in two different ways which 
will be described in next section: 

(1) The correlation times for the linear dynamics: 

SM(O,L) 
rM(L) - CM(O ) 

(3.9) 
S (O,L) 

rE(L) - CM(O ) 

These correlations explore the scaling function in a regime of very long 
time or low frequency where we expect the rounding effects: limx_~0 ~M(X) 
= const, and limx~0~t'E(x)= const. These "rounding effects" are under- 
standable for finite systems in a regime where the time of fluctuation is 
longer than the longest correlation time ( ~ ' g  or rE). No correlation exists 
here and the power spectrum appears white. These correlation times have a 
size dependence given by (3.8) and (3.7) that reflects the fundamental 
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assumption 

( L )  = , 4 L  z 

�9 = A ' L  z ( 3 . 1 0 )  

(2) The spectrum power analysis of these fluctuations which defines 
the exponent /~ in the asymptotic regime where the bulk behavior is 
expected (7) at ( T  > To): 

La ( T  > Tc) lira S M (~o) - o~ ~" 
L--~ oo 

L d (3.11) 
lim S e (o~) - o~ "~ 

L---~ ~ 

The asymptotic behavior of SM(O~) is in L a instead of L 2d since the 
average magnetization is vanishing for T > T~. These relations take into 
account the extensivity of the thermodynamic variables M and E and 
define the critical exponent of the power spectrum at T~. The exponents/~M 
and ~t e are related to z and to the other static exponents 7, a, p by imposing 
the asymptotic variation (3.11) to the scaling functions 9 of (3.8): 

lim ~ M ( X ) ~  1 
X--> oO " " X I~M 

(3.12) 
lim 9 E( X )- -  1 

x~oo - - Xt/E 

By combining (3.12), (3.11), and (3.8) we obtain 

/~M= 1 + ~' 
P2 

~ E = I +  ~--  
P2 

For an Ising system in two dimensions d - - 2 ,  we know that ~, = 1, 
y / p  = 7/4 ,  a = 0. From the numerical determination of the correlation 
time described in next section we shall get z = 2(___ 0.1) and/~M = 15/8 and 
/~e = 1. These values as well as the scaling invariance will be compared to 
the numerical experimentation in next section. The expression for /~g 
differs from the one given in Ref. 7 because here we study the total 
magnetization or energy instead of the magnetization or energy per spin. 

The correspondence between the exponents/~M or/x e w i t h / ~  or #e 1 the 
analogous one for the extensive variable (per spin) is 

~M = 1 + ~1 M 

~E = 1 + ~E 1 

At lower temperature T < T c one would find: /~M = /~" 



Critical Dynamics of Finite Islng Model 317 

4. R E S U L T S  A N D  C O N C L U S I O N S  

With the method described in Section 2, the fluctuations of the total 
magnetization and energy have been recorded over very long periods. 
These periods of recording time are reported in Table I: the longest periods 
correspond to 5 • 105 events of one single spin flip, therefore to 2 x 106 
MC steps since the mean time between two consecutive events is always 4.6 
MCS (a transitory regime of many 104 MCS is performed before each 
recording in order to enter into the equilibrium thermal regime). In this 
experimentation the factor 4.6 represents the gain in saving time by using 
the queuing process versus the standard Monte Carlo method. A concentra- 
tion procedure is used where a set of many events (many L 2 events 
typically) is replaced by one single event of mean value at a mean date of 
the set. In Fig. 2 a typical record of the magnetization fluctuations is 
represented: it is shown that the magnetization reaches very frequently its 
maximum value where it fluctuates with small amplitude, then it jumps 
suddenly to its opposite value. This nonlinear behavior may be understood 
intuitively from the very strong increase of the spontaneous magnetization 
just below the critical domain. The autocorrelation function of the magne- 
tization is obtained by a time averaging simulating the thermal averaging: 

I ( 9 - t S M ( t ' ) ~ M ( t ' +  t)dt '  (4.1) ( S M ( O ) S M ( t ) )  = t f -  t - t i j,, 

and a similar expression for the energy E(t).  
The unit of time is one Monte Carlo step per spin and the related 

frequency unit for the Fourier transform is (MCS/sp in ) - i .  
The average magnetization is very small as expected from this study at 

Tc(L ). The second moments CM(0) or Ce(O ) are proportional to the 
magnetic susceptibility or specific heat (3.7). The values of CM(0) for 

Table I. Fluctuations of Magnellzatlon: Numerical Simulation 

Recording time S C(0) % 
T c (MCS/spin) (MCS) (MCS/spin) C(O)/L 3"75 (MCS/spin) 

2 2.68 
4 2.47 
5 2.43 
6 2.405 
7 2.386 
8 2.371 
9 2.365 

10 2.36 
15 2.32 

I 

19 739 6.58 12.056 0.896 31.02 
22 984 4.597 94.51 0.522 56.56 
23 387 4.677 269.46 0.6446 101.77 
23 216 4.643 589.54 0.712 182.68 
22 934 4.587 1090 0.74 224.17 
13 868 4.623 1932 0.793 306.16 
13 622 4.541 3787 0.716 232.5 
22 944 4.57 4913 0.87 425 
8 858 4.53 21571 0.838 652 
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ft) 

Fig. 2. Noise of magnetization recorded over a period of 103 MCS/spin for a small sample 
of size 6 • 6. The largest amplitude of the fluctuations corresponds to the saturated magnetiza- 
tion proportional to L 2 = 36. 

various sizes L are indicated in Table I; the ratio of CM(O)//L 3"75 gives 
precisely the value of the scaling function Y~ 

cM(o) 
La+V/.- Y~ (4.2) 

as defined by Landau. (2) These values are close to 1--except for the 
small-size samples--because our investigation is performed at T = Tc(L ) in 
the rounded critical regime (E < 1). The autocorrelation function is calcu- 
lated by relation (4.1) over long periods where it falls down to 1% of the 
initial value; finally the Fourier transform is performed (fast Fourier 
transform algorithm of Eberhart (9)) leading to the functions SM(~) and 
SE(~ ) [cf. (3.4)]. 

4.1. Size Dependence: Determination of z 

The correlation times for magnetization and energy are defined by the 
relations (3.9). Their numerical values are listed in Tables I and II and 
plotted in Fig. 3. The points for the magnetization are very well aligned 



Critical Dynamics of Finite Ising Model 319 

L 

Table II. Fluctuations of Energy: Numerical Simulation 
i i i 

Recording time S C(0) Average energy % 
(MCS/spin)  (MCS) (MCS/spin)  per spin (MCS/spin)  

6 2.405 4 600 4.59 176.9 - 1.36 11.5 
7 2.386 6 640 4.43 247.1 - 1.34 15.5 
8 2.371 3 030 4.85 372.57 - 1.39 13.842 
9 2.365 4 305 4.465 470.97 - 1.414 18.28 

10 2.36 3 519 4.4 631.9 - 1.4 20.4 
13 2.33 6 781 4.5 1 081.25 - 1.35 35.89 

except for the L = 15 sample, where the maximum time of recording the 
correlation function is probably too short for an accurate determination of 
z. The straight line corresponds to the law 

":M ( L )  = A L  z ( M C S / s p i n )  (4.3) 

with A --- 4.5 and z = 2.0 + 0.1. This value validates Suzuki's prediction and 

100o 

500 

100 

50 

"~c 
,n MC SJspin 

5 / I0 15 
o o /  

L 

Fig. 3. Size variation of the correlation time at T = T c. Black points are related to magnetiza- 
tion and circles to energy. The straight line among the circles corresponds to the L 2 law. For 
black points the straight line is obtained by a best fit with a L 2 law by a linear regression on 
data (except the 15 • 15 sample: see text). The bar reproduces the result of Ref. 3. The line 
through the white circles describes the correlation time for the energy obeying the equation 
E = A'L z' with A' = 0.2 and z' = 2. It does not fit all the points but only the largest size of our 
simulation, namely, L = 9, L = 10, L = 13. It is not the best fit of all our data because the 
smaller size gives values of ~'E too close to the paramagnetic cutoff of the relaxation time %. 
See text. 
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gives a better determination of A than previous work. Previous determina- 
tion of z by Stoll, Binder, and Schneider (x~ has used the reduced tempera- 
ture variable rather than the size length L. They have found z = A~,~ = 
1.85 + 0.10 instead of 2 + 0.1 in this work. 

For the energy, the points for large size define a straight line corre- 
sponding to 

where A' = 0.2 and Z = 
one single characteristic 

"r e = A ' L  ~ (MCS/spin)  (4.4) 

2. This result confirms the scaling assumptions of 
time for the dynamics. However, the correlation 

times for the energy are shorter than those for the magnetization: for the 
smaller size L < 7, "re(L ) deviates from the scaling variation and reaches a 
constant value T O which belongs to the smallest sample L = 2 :T  0 = 6.5 
(MCS/spin).  

The time T O represents the paramagnetic relaxation time that character- 
izes the correlation times (present) outside the critical regime: its value does 
not depend on the size L, but  only on temperature (T O = 1 at T ~  oo). In 
the short-time behavior (below or near To) the results depend on the details 
of the kinetics--Glauber and queuing process--and they do not have a 
universal character. 

4.2. Spectral Power: Determination of # 

The Fourier transform (3.4) defines SM(t 0 and SE(o 0, which are now 
calculated for various sizes L = 5 up to L = 15 and are plotted in Fig. 4. 

In order to test the dynamical scaling hypothesis of finite-size behavior 
a plot of SM(t,o)/L 5"75 and S e ( o O / L  4 as functions of ~0L 2 is used. These 
exponents correspond to the dimensional analysis of the relations (3.8) for 
the following values: z = 2, 3' = 7/4,  a = 0, u = 1. Under the assumption 
that scaling is satisfied, this plot has the advantage that it graphically 
defines the shape function q(toLZ). However, the validity of the bulk 
scaling law is reduced to a small range of frequency: 

1 < 1 (4.5) 
�9 (L---S < ' ~  

Here T(L) is the correlation time and T 0 is the paramagnetic relaxation time 
defined above. Actually, at low frequency O~T(L)< 1, a white spectrum 
S(~0) = ~0 is expected since T(L) has the meaning of the longest correlation 
time due to the finite-size cutoff. At high frequency cot 0 > 1, all fluctuations 
are indeed strongly correlated by the thermal fluctuations described by T O , 
leading to a Brownian power spectrum S(~)~r  -2. The necessity of large- 
size simulation appears clearly in long T L for opening the frequency 
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"window" (4.5). (For the scaling variable wL 2 of Figs. 3 and 4 the 
low-frequency cutoff L2/'rL = A or A' is size independent while the upper 
cutoff varies as L2/'r0 .) For SM(~) it is remarkable that the samples of 
different sizes contribute to a rather concentrated cloud of points, validat- 
ing the finite-size scaling. The power law w-"M variation of SM(w) in the 
"window" is determined from the slope: I~M = 1.9+_0.1. This value is 
compatible with the prediction of the scaling hypothesis with z = 2 given in 
Section 3: /~M --- 1.875. 

Consider now the power spectrum of energy SE(w ) of Fig. 4: the 
expected exponent is/~E = 1. This slope is not observed except perhaps at 
low frequency. We understand this result in terms of "window narrowing": 
�9 re (L  ) is at best only four times as long as ,r o for L = 13, but only twice ,r 0 
for L = 7. Therefore, the scaling regime is mixed up with the white and 
Brownian regimes. A phenomenological way to understand this effect is to 
assume a distribution of independent correlation time n(,'rc)~,r~ -a, the 
exponent of which must be fitted to/~. For a superposition of this correla- 
tion time % given by n(%), the autocorrelation is obtained by a Laplace 
transform of n(%), while the power spectrum is given by 

~ f ~ n ( % )  (4.6) S ( ~ ) - - ~ -  ~ "~od,rc 
2 2  l + w %  

The condition of existence of (4.6) implies a = 2 - / ~  and 0 < a < 2 when % 
varies from 0 to oo. This relaxation mode analysis can be generalized in a 
straightforward way to the case where a "window" (4.5) is now considered 
as a cutoff for the distribution n(,r~): 

~ % d,rc (4.7) S(w)--  Ln(,rr 1 + o~2,r 2 

This expression is easily handled in case of energy where /~E = 1, hence 
a = l :  

S ( w ) ~  1 [arctan(w,r~) - arctan(w,r'0)l (4.8) 

The function (4.8) is plotted in Fig. 4 and shows that the scaling hypothesis 
combined with the "window" effect gives a good understanding of these 
results. 

In conclusion, the method first proposed by Bortz, Kalos, and Lebo- 
witz (6) has been used as the kinetics for the Ising model in two dimensions 
at the critical temperature. Under the conditions of critical slowing it 
permits accelerating the kinetics of the spins by a factor of 5. The finite-size 
scaling hypothesis has been verified both for magnetic and energetic 
fluctuations and the scaling shape functions have been determined. New 
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determinations of the dynamical exponent z and, for the first time, of the 
power spectrum SE(w ) and Sg(w ) have been obtained and characterized by 
the critical exponents/z E and/~g which obey the expected scaling relations. 
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